Ajax Paper Company Production Schedule
TomSym implementation of GAMS Example (AJAX,SEQ=60)
This sample model is taken from the cybernet pds/apex sample library of models. A paper manufacturer can produce four different types of paper on three different machines. Given a fixed demand schedule the objective is to find a production plan that maximizes monthly profits.
CDC, PDS/APEX Sample Model Library, 1977. Control Data Corporation
% m: machines at mills (machine 1, machine 2, machine 3) % % g: paper grades (20-bond-wt, 25-bond-wt, c-bond-ext, tissue-wrp) toms 3x1 m toms 4x1 g % Matrix prate(g,m) production rate (tons per hour) prate = [53 52 49; 51 49 44; 52 45 47; 42 44 40]; % Matrix pcost(g,m) production cost ($ per ton) pcost = [76 75 73; 82 80 78; 96 95 92; 72 71 70]; demand = [30000; 20000; 12000; 8000]; price = [77;81;99;105]; % Available machine time avail = [672; 600; 480]; % Production (tons per month) toms 4x3 outp % Variable are positive cbnd = {outp >= 0}; % Machine capacity (hours per month) eq1 = {sum(outp./prate,1) <= avail'}; % Demand (tons per month) eq2 = {sum(outp,2) == demand}; % Profit definition ($ per month) profit = sum(sum(demand.*price)) - sum(sum(pcost.*outp)); solution = ezsolve(-profit,{cbnd, eq1, eq2});
Problem type appears to be: lp ===== * * * =================================================================== * * * TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2010-02-05 ===================================================================================== Problem: --- 1: f_k -441003.595310464500000000 sum(|constr|) 0.000000000000000121 f(x_k) + sum(|constr|)-441003.595310464500000000 f(x_0) 0.000000000000000000 Solver: CPLEX. EXIT=0. INFORM=1. CPLEX Dual Simplex LP solver Optimal solution found FuncEv 8 Iter 8