Car Rental

Contents

Problem description

A small car rental company has a fleet of 94 vehicles distributed among its 10 agencies. The location of every agency is given by its geographical coordinates X and Y in a grid based on kilometers. We assume that the road distance between agencies is approximately 1.3 times the Euclidean distance (as the crow flies). The following table indicates the coordinates of all agencies, the number of cars required the next morning, and the stock of cars in the evening preceding this day.

Description of the vehicle rental agencies

+-------------+--+--+--+--+--+--+--+--+--+--+
|Agency       | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|
+-------------+--+--+--+--+--+--+--+--+--+--+
|X coordinate | 0|20|18|30|35|33| 5| 5|11| 2|
|Y coordinate | 0|20|10|12| 0|25|27|10| 0|15|
+-------------+--+--+--+--+--+--+--+--+--+--+
|Required cars|10| 6| 8|11| 9| 7|15| 7| 9|12|
|Cars present | 8|13| 4| 8|12| 2|14|11|15| 7|
+-------------+--+--+--+--+--+--+--+--+--+--+

Supposing the cost for transporting a car is $ 0.50 per km, determine the movements of cars that allow the company to re-establish the required numbers of cars at all agencies, minimizing the total cost incurred for transport.

Variables

demand                     Required cars per agency
stock                      Cars present
cost                       Cost per km to transport a car
xcord                      The X-coordinate of agencies
ycord                      The Y-coordinate of agencies
n                          Number of agencies
distance                   A matrix of distances

Reference

Applications of optimization... Gueret, Prins, Seveaux

% Marcus Edvall, Tomlab Optimization Inc, E-mail: tomlab@tomopt.com
% Copyright (c) 2005-2009 by Tomlab Optimization Inc., $Release: 7.2.0$
% Written Oct 7, 2005.   Last modified Apr 8, 2009.

Problem setup

demand = [10   6   8  11   9   7  15   7   9  12]';
stock  = [ 8  13   4   8  12   2  14  11  15   7]';
cost   = 0.50;

xcord  = [ 0  20  18  30  35  33   5   5  11   2]';
ycord  = [ 0  20  10  12   0  25  27  10   0  15]';
n      = length(xcord);

distance = zeros(n,n);

for i=1:n
    for j=1:n
        distance(i,j) = 1.3*sqrt( (xcord(i) - xcord(j))^2 + (ycord(i) - ycord(j))^2);
    end
end

idx_excess = find(stock-demand > 0);
n_excess   = length(idx_excess);

idx_need   = find(stock-demand < 0);
n_need     = length(idx_need);

move = tom('move',n_excess,n_need,'int');

% Bounds
bnds = {0 <= move};

% Excess constraint
con1 = {sum(move,2) == stock(idx_excess) - demand(idx_excess)};

% Need constraint
con2 = {sum(move,1)' == demand(idx_need) - stock(idx_need)};

% Objective
objective = sum(sum(move.*cost.*distance(idx_excess,idx_need)));

constraints = {bnds, con1, con2};
options = struct;
options.solver = 'cplex';
options.name   = 'Car Rental';
sol = ezsolve(objective,constraints,[],options);

PriLev = 1;
if PriLev > 0
    temp = sol.move;
    disp('THE SENDING OF CARS')
    for i = 1:n_excess,       % scan all positions, disp interpretation
        disp(['agency ' num2str(idx_excess(i)) ' sends: ' ])
        for j = 1:n_need,
            if temp(i,j) ~= 0
                disp(['   ' num2str(temp(i,j)) ' car(s) to agency ' ...
                    num2str(idx_need(j))])
            end
        end
        disp(' ')
    end

    disp('THE GETTING OF CARS')
    for j = 1:n_need,
        disp(['agency ' num2str(idx_need(j)) ' gets: ' ])
        for i = 1:n_excess,       % scan all positions, disp interpretation
            if temp(i,j) ~= 0
                disp(['   ' num2str(temp(i,j)) ' car(s) from agency ' ...
                    num2str(idx_excess(i))])
            end
        end
        disp(' ')
    end
end

% MODIFICATION LOG
%
% 051019 med   Created.
% 060112 per   Added documentation.
% 060125 per   Moved disp to end
% 090308 med   Converted to tomSym
Problem type appears to be: mip
===== * * * =================================================================== * * *
TOMLAB - Tomlab Optimization Inc. Development license  999001. Valid to 2010-02-05
=====================================================================================
Problem: ---  1: Car Rental                     f_k     152.639016322956310000
                                              f(x_0)      0.000000000000000000

Solver: CPLEX.  EXIT=0.  INFORM=101.
CPLEX Branch-and-Cut MIP solver
Optimal integer solution found

FuncEv    8 
CPU time: 0.015625 sec. Elapsed time: 0.015000 sec. 
THE SENDING OF CARS
agency 2 sends: 
   1 car(s) to agency 3
   5 car(s) to agency 6
   1 car(s) to agency 7
 
agency 5 sends: 
   3 car(s) to agency 4
 
agency 8 sends: 
   4 car(s) to agency 10
 
agency 9 sends: 
   2 car(s) to agency 1
   3 car(s) to agency 3
   1 car(s) to agency 10
 
THE GETTING OF CARS
agency 1 gets: 
   2 car(s) from agency 9
 
agency 3 gets: 
   1 car(s) from agency 2
   3 car(s) from agency 9
 
agency 4 gets: 
   3 car(s) from agency 5
 
agency 6 gets: 
   5 car(s) from agency 2
 
agency 7 gets: 
   1 car(s) from agency 2
 
agency 10 gets: 
   4 car(s) from agency 8
   1 car(s) from agency 9